Hypothesis Testing Details: For $\mu_{1}-\mu_{2}$, large samples

1. Hypotheses:

$$
\begin{array}{lll}
H_{0}: \mu_{1}-\mu_{2}=\Delta_{0} & \mu_{1}-\mu_{2} \leq \Delta_{0} & \mu_{1}-\mu_{2} \geq \Delta_{0} \\
H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0} & \mu_{1}-\mu_{2}>\Delta_{0} & \mu_{1}-\mu_{2}<\Delta_{0}
\end{array}
$$

Where: μ_{1} is the mean \qquad for all \qquad and μ_{2} is the mean \qquad for all \qquad
2. Assumptions: We have independent, random samples from two populations, and the sample size from each is large enough that we can use the Central Limit Theorem.
3. Rejection Region: For the three types of tests:

Left: Reject H_{0} if $T S<Z_{\alpha}$
Right: Reject H_{0} if $T S>Z_{1-\alpha}$
Two: Reject H_{0} if $|T S|>Z_{1-\alpha / 2}$

4. Test Statistic:

$$
T S=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\Delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

5. P-value: For the three types of tests:

Left: $P-$ value $=P(Z<T S)$
Right: $P-$ value $=P(Z>T S)$
Two: $P-$ value $=2 \cdot P(Z<-|T S|)$
6. Conclusion: There is enough evidence to conclude that difference between the mean for all \qquad and the mean \qquad for all \qquad (is more than/less than/not) (value of Δ_{0}). (If two tailed and we reject H_{0}, add: "In fact, it is (more/less).")

Hypothesis Testing Details: For $\mu_{1}-\mu_{2}$, Small sample and σ_{1}, σ_{2} unknown but equal, normal data

1. Hypotheses:

$H_{0}: \mu_{1}-\mu_{2}=\Delta_{0} \quad \mu_{1}-\mu_{2} \leq \Delta_{0} \quad \mu_{1}-\mu_{2} \geq \Delta_{0}$
$H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0} \quad \mu_{1}-\mu_{2}>\Delta_{0} \quad \mu_{1}-\mu_{2}<\Delta_{0}$
Where: μ_{1} is the mean \qquad for all \qquad and μ_{2} is the mean \qquad for all \qquad
2. Assumptions: We have independent, random samples from two normally distributed populations, with variances that are unknown but equal.
3. Rejection Region: For the three types of tests:

Left: Reject H_{0} if $T S<t_{n_{1}+n_{2}-2, \alpha}$
Right: Reject H_{0} if $T S>t_{n_{1}+n_{2}-2,1-\alpha}$
Two: Reject H_{0} if $|T S|>t_{n_{1}+n_{2}-2,1-\alpha / 2}$

4. Test Statistic:

$$
\begin{aligned}
T S & =\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\Delta_{0}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
\text { Where: } s_{p}^{2} & =\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
\end{aligned}
$$

5. P-value: For the three types of tests:

Left: $P-$ value $=P\left(t_{n_{1}+n_{2}-2}<T S\right)$
Right: P - value $=P\left(t_{n_{1}+n_{2}-2}>T S\right)$
Two: $P-$ value $=2 \cdot P\left(t_{n_{1}+n_{2}-2}>|T S|\right)$
6. Conclusion: There is enough evidence to conclude that difference between the mean for all \qquad and the mean \qquad for all \qquad (is more than/less than/not) (value of Δ_{0}). (If two tailed and we reject H_{0}, add: "In fact, it is (more/less).")

Hypothesis Testing Details: For $\mu_{1}-\mu_{2}$, Small sample and σ_{1} and σ_{2} unknown, normal data

1. Hypotheses:

$$
\begin{array}{lll}
H_{0}: \mu_{1}-\mu_{2}=\Delta_{0} & \mu_{1}-\mu_{2} \leq \Delta_{0} & \mu_{1}-\mu_{2} \geq \Delta_{0} \\
H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0} & \mu_{1}-\mu_{2}>\Delta_{0} & \mu_{1}-\mu_{2}<\Delta_{0}
\end{array}
$$

Where: μ_{1} is the mean \qquad for all \qquad and μ_{2} is the mean \qquad for all \qquad
2. Assumptions: We have independent, random samples from two normally distributed populations, with variances that are unknown.
3. Rejection Region: For the three types of tests:

Left: Reject H_{0} if $T S<t_{d f, \alpha}$
Right: Reject H_{0} if $T S>t_{d f, 1-\alpha}$
Two: Reject H_{0} if $|T S|>t_{d f, 1-\alpha / 2}$

$$
\text { Where: } d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{n_{1}-1}+\frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}-1}}
$$

4. Test Statistic:

$$
T S=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\Delta_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

5. P-value: For the three types of tests:

Left: $P-$ value $=P\left(t_{d f}<T S\right)$
Right: $P-$ value $=P\left(t_{d f}>T S\right)$
Two: $P-$ value $=2 \cdot P\left(t_{d f}>|T S|\right)$
6. Conclusion: There is enough evidence to conclude that difference between the mean for all \qquad and the mean \qquad for all \qquad (is more than/less than $/$ not) (value of Δ_{0}). (If two tailed and we reject H_{0}, add: "In fact, it is (more/less).")

1. Hypotheses:

$H_{0}: \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=\Lambda_{0} \quad \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \leq \Lambda_{0} \quad \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \geq \Lambda_{0}$
$H_{0}: \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \neq \Lambda_{0} \quad \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}>\Lambda_{0} \quad \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}<\Lambda_{0}$
Where: σ_{1}^{2} is the variance associated with the measurement of \qquad for all \qquad and σ_{2}^{2} is the variance associated with the measurement of \qquad for all \qquad
2. Assumptions: We have independent random samples from two normally distributed populations.
3. Rejection Region: For the three types of tests:

Left: Reject H_{0} if $T S<F_{n_{1}-1, n_{2}-1, \alpha}$
Right: Reject H_{0} if $T S>F_{n_{1}-1, n_{2}-1,1-\alpha}$
Two: Reject H_{0} if $T S<F_{n_{1}-1, n_{2}-1, \alpha / 2}$ or if $T S>F_{n_{1}-1, n_{2}-1,1-\alpha / 2}$

4. Test Statistic:

$$
T S=\frac{s_{1}^{2}}{s_{2}^{2} \cdot \Lambda_{0}}
$$

5. P-value: For the three types of tests:

Left: $P-$ value $=P\left(F_{n_{1}-1, n_{2}-1}<T S\right)$
Right: $P-$ value $=P\left(F_{n_{1}-1, n_{2}-1}>T S\right)$
Two: $P-$ value $=2 \cdot P\left(F_{n_{1}-1, n_{2}-1}<T S\right)$ or $P-$ value $=2 \cdot P\left(F_{n_{1}-1, n_{2}-1}>T S\right)$, whichever is less than 1.
6. Conclusion: There is enough evidence to conclude that ratio of the variance associated with the measurement of \qquad for all \qquad and the variance associated with the measurement of \qquad for all \qquad (is more than/less than/not) (value of Λ_{0}). (If two tailed and we reject H_{0}, add: "In fact, it is (more/less).")

Hypothesis Testing Details: For $\mu_{1}-\mu_{2}$, Small sample, non-normal data, n_{1}, n_{2} greater than 8

1. Hypotheses:

$$
\begin{array}{lll}
H_{0}: \mu_{1}-\mu_{2}=\Delta_{0} & \mu_{1}-\mu_{2} \leq \Delta_{0} & \mu_{1}-\mu_{2} \geq \Delta_{0} \\
H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0} & \mu_{1}-\mu_{2}>\Delta_{0} & \mu_{1}-\mu_{2}<\Delta_{0}
\end{array}
$$

Where: μ_{1} is the mean \qquad for all \qquad and μ_{2} is the mean \qquad for all \qquad
2. Assumptions: We have independent random samples from two populations that have distributions with the same shape.
3. Rejection Region: For the three types of tests:

Left: Reject H_{0} if $T S<Z_{\alpha}$
Right: Reject H_{0} if $T S>Z_{1-\alpha}$
Two: Reject H_{0} if $|T S|>Z_{1-\alpha / 2}$

4. Test Statistic:

$$
T S=\frac{W-\mu_{w}}{\sigma_{w}}
$$

Where: R_{j} is the rank of $\left(x_{1 j}-\Delta_{0}\right)$ in the combined sample; $W=\sum_{j=1}^{n_{1}} R_{j}$

$$
\mu_{w}=\frac{n_{1}\left(n_{1}+n_{2}+1\right)}{2} \quad \sigma_{w}^{2}=\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}-\frac{n_{1} n_{2} \sum\left(\tau_{j}-1\right)\left(\tau_{j}\right)\left(\tau_{j}+1\right)}{12\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-1\right)}
$$

and τ_{j} is the frequency of the $j^{\text {th }}$ distinct value in the combined sample
5. P-value: For the three types of tests:

Left: $P-$ value $=P(Z<T S)$
Right: $P-$ value $=P(Z>T S)$
Two: $P-$ value $=2 \cdot P(Z>|T S|)$
6. Conclusion: There is enough evidence to conclude that difference between the mean for all \qquad and the mean \qquad for all \qquad (is more than/less than $/$ not) (value of Δ_{0}). (If two tailed and we reject H_{0}, add: "In fact, it is (more/less).")

1. Hypotheses:

$H_{0}: \mu_{1}-\mu_{2}=\Delta_{0} \quad \mu_{1}-\mu_{2} \leq \Delta_{0} \quad \mu_{1}-\mu_{2} \geq \Delta_{0}$
$H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0} \quad \mu_{1}-\mu_{2}>\Delta_{0} \quad \mu_{1}-\mu_{2}<\Delta_{0}$
Where: μ_{1} is the mean \qquad for all \qquad and μ_{2} is the mean \qquad for all \qquad
2. Assumptions: We have a random sample from a normally distributed population of differences, with unknown variance.
3. Rejection Region: For the three types of tests:

Left: Reject H_{0} if $T S<t_{n-1, \alpha}$
Right: Reject H_{0} if $T S>t_{n-1,1-\alpha}$
Two: Reject H_{0} if $|T S|>t_{n-1,1-\alpha / 2}$

4. Test Statistic:

$$
T S=\frac{\bar{D}-\Delta_{0}}{\frac{s}{\sqrt{n}}}
$$

5. P-value: For the three types of tests:

Left: $P-$ value $=P\left(t_{n-1}<T S\right)$
Right: $P-$ value $=P\left(t_{n-1}>T S\right)$
Two: $P-$ value $=2 \cdot P\left(t_{n-1}>|T S|\right)$
6. Conclusion: There is enough evidence to conclude that difference between the mean for all \qquad and the mean \qquad for all \qquad (is more than/less than $/$ not) (value of Δ_{0}). (If two tailed and we reject H_{0}, add: "In fact, it is (more/less).")

1. Hypotheses:

$$
\begin{array}{lll}
H_{0}: \mu_{1}-\mu_{2}=\Delta_{0} & \mu_{1}-\mu_{2} \leq \Delta_{0} & \mu_{1}-\mu_{2} \geq \Delta_{0} \\
H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0} & \mu_{1}-\mu_{2}>\Delta_{0} & \mu_{1}-\mu_{2}<\Delta_{0}
\end{array}
$$

Where: μ_{1} is the mean \qquad for all \qquad and μ_{2} is the mean \qquad for all \qquad
2. Assumptions: We have a random sample from some population of differences, and the sample size is large enough that we can use the Central Limit Theorem.
3. Rejection Region: For the three types of tests:

Left: Reject H_{0} if $T S<Z_{\alpha}$
Right: Reject H_{0} if $T S>Z_{1-\alpha}$
Two: Reject H_{0} if $|T S|>Z_{1-\alpha / 2}$

4. Test Statistic:

$$
T S=\frac{\bar{D}-\Delta_{0}}{\frac{\sigma}{\sqrt{n}}}
$$

5. P-value: For the three types of tests:

Left: $P-$ value $=P(Z<T S)$
Right: P - value $=P(Z>T S)$
Two: $P-$ value $=2 \cdot P(Z>|T S|)$
6. Conclusion: There is enough evidence to conclude that difference between the mean for all \qquad and the mean \qquad for all \qquad (is more than/less than $/$ not) (value of Δ_{0}). (If two tailed and we reject H_{0}, add: "In fact, it is (more/less).")

Hypothesis Testing Details: For $p_{1}-p_{2}$

1. Hypotheses:

$H_{0}: p_{1}-p_{2}=\Delta_{0} \quad p_{1}-p_{2} \leq \Delta_{0} \quad p_{1}-p_{2} \geq \Delta_{0}$
$H_{a}: p_{1}-p_{2} \neq \Delta_{0} \quad p_{1}-p_{2}>\Delta_{0} \quad p_{1}-p_{2}<\Delta_{0}$
Where: p_{1} is the true proportion of all \qquad that \qquad and p_{2} is the true proportion of all \qquad that \qquad
2. Assumptions: We have independent, random observations from two binomial experiment, and there are enough trials in each that we can use the Central Limit Theorem.
3. Rejection Region: For the three types of tests:

Left: Reject H_{0} if $T S<Z_{\alpha}$
Right: Reject H_{0} if $T S>Z_{1-\alpha}$
Two: Reject H_{0} if $|T S|>Z_{1-\alpha / 2}$

4. Test Statistic:

$$
T S=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\Delta_{0}}{\sqrt{\frac{\hat{p_{1}\left(1-\hat{p_{1}}\right)}}{n_{1}}+\frac{\hat{p_{2}\left(1-\hat{p_{2}}\right)}}{n_{2}}}}
$$

5. P-value: For the three types of tests:

Left: $P-$ value $=P(Z<T S)$
Right: P - value $=P(Z>T S)$
Two: $P-$ value $=2 \cdot P(Z>|T S|)$
6. Conclusion: There is enough evidence to conclude that difference between the proportion of all (is more than/less than/not) (value of Δ_{0}). (If two tailed and we reject H_{0}, add: "In fact, it is (more/less).")

