Hypothesis Testing Details: For $\mu_1 - \mu_2$, large samples

1. Hypotheses:

 $H_0: \mu_1 - \mu_2 = \Delta_0 \qquad \mu_1 - \mu_2 \le \Delta_0 \qquad \mu_1 - \mu_2 \ge \Delta_0$ $H_a: \mu_1 - \mu_2 \neq \Delta_0 \qquad \mu_1 - \mu_2 > \Delta_0 \qquad \mu_1 - \mu_2 < \Delta_0$ Where: μ_1 is the mean _____ for all _____ and μ_2 is the mean _____ for all _____

2. Assumptions: We have independent, random samples from two populations, and the sample size from each is large enough that we can use the Central Limit Theorem.

3. **Rejection Region:** For the three types of tests:

Left: Reject H_0 if $TS < Z_{\alpha}$ Right: Reject H_0 if $TS > Z_{1-\alpha}$ Two: Reject H_0 if $|TS| > Z_{1-\alpha/2}$

4. Test Statistic:

$$TS = \frac{\left(\bar{X}_1 - \bar{X}_2\right) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

/ -

5. *P*-value: For the three types of tests:

Left: P - value = P(Z < TS)Right: P - value = P(Z > TS)Two: P - value = $2 \cdot P(Z < - |TS|)$

6. Conclusion: There is enough evidence to conclude that difference between the mean _____ for all ______ (is more than/less than/not) (value of Δ_0). (If two tailed and we reject H_0 , add: "In fact, it is (more/less).")

Hypothesis Testing Details: For $\mu_1 - \mu_2$, Small sample and σ_1 , σ_2 unknown but equal, normal data

1. Hypotheses:

 $H_0: \ \mu_1 - \mu_2 = \Delta_0 \qquad \mu_1 - \mu_2 \leq \Delta_0 \qquad \mu_1 - \mu_2 \geq \Delta_0$ $H_a: \ \mu_1 - \mu_2 \neq \Delta_0 \qquad \mu_1 - \mu_2 > \Delta_0 \qquad \mu_1 - \mu_2 < \Delta_0$ Where: $\mu_1 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is } \mu_2 \text$

2. Assumptions: We have independent, random samples from two normally distributed populations, with variances that are unknown but equal.

3. Rejection Region: For the three types of tests:

Left: Reject H_0 if $TS < t_{n_1+n_2-2,\alpha}$ Right: Reject H_0 if $TS > t_{n_1+n_2-2,1-\alpha}$ Two: Reject H_0 if $|TS| > t_{n_1+n_2-2,1-\alpha/2}$

4. Test Statistic:

$$TS = \frac{\left(\bar{X}_1 - \bar{X}_2\right) - \Delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Where: $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$

- 5. *P*-value: For the three types of tests:
- Left: P value = $P(t_{n_1+n_2-2} < TS)$ Right: P - value = $P(t_{n_1+n_2-2} > TS)$ Two: P - value = $2 \cdot P(t_{n_1+n_2-2} > |TS|)$
- 6. Conclusion: There is enough evidence to conclude that difference between the mean ______ for all ______ (is more than/less than/not) (value of Δ_0). (If two tailed and we reject H_0 , add: "In fact, it is (more/less).")

Hypothesis Testing Details: For $\mu_1 - \mu_2$, Small sample and σ_1 and σ_2 unknown, normal data

1. Hypotheses:

2. Assumptions: We have independent, random samples from two normally distributed populations, with variances that are unknown.

3. **Rejection Region:** For the three types of tests:

Left: Reject H_0 if $TS < t_{df,\alpha}$ Right: Reject H_0 if $TS > t_{df,1-\alpha}$ Two: Reject H_0 if $|TS| > t_{df,1-\alpha/2}$

Where:
$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$$

4. Test Statistic:

$$TS = \frac{(X_1 - X_2) - \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

5. *P*-value: For the three types of tests:

Left: P - value = $P(t_{df} < TS)$ Right: P - value = $P(t_{df} > TS)$ Two: P - value = $2 \cdot P(t_{df} > |TS|)$

6. Conclusion: There is enough evidence to conclude that difference between the mean ______ for all ______ (is more than/less than/not) (value of Δ_0). (If two tailed and we reject H_0 , add: "In fact, it is (more/less).")

Hypothesis Testing Details: For σ_1^2/σ_2^2 , normal data

1. Hypotheses:

$$H_0: \ \frac{\sigma_1^2}{\sigma_2^2} = \Lambda_0 \qquad \frac{\sigma_1^2}{\sigma_2^2} \le \Lambda_0 \qquad \frac{\sigma_1^2}{\sigma_2^2} \ge \Lambda_0$$
$$H_0: \ \frac{\sigma_1^2}{\sigma_2^2} \ne \Lambda_0 \qquad \frac{\sigma_1^2}{\sigma_2^2} > \Lambda_0 \qquad \frac{\sigma_1^2}{\sigma_2^2} < \Lambda_0$$

Where: σ_1^2 is the variance associated with the measurement of ______ for all ______ and σ_2^2 is the variance associated with the measurement of ______ for all ______

2. Assumptions: We have independent random samples from two normally distributed populations.

3. Rejection Region: For the three types of tests:

Left: Reject H_0 if $TS < F_{n_1-1,n_2-1,\alpha}$ Right: Reject H_0 if $TS > F_{n_1-1,n_2-1,1-\alpha}$ Two: Reject H_0 if $TS < F_{n_1-1,n_2-1,\alpha/2}$ or if $TS > F_{n_1-1,n_2-1,1-\alpha/2}$

4. Test Statistic:

$$TS = \frac{s_1^2}{s_2^2 \cdot \Lambda_0}$$

- 5. *P*-value: For the three types of tests:
- Left: $P \text{value} = P(F_{n_1 1, n_2 1} < TS)$
- Right: $P value = P(F_{n_1 1, n_2 1} > TS)$
- Two: $P \text{value} = 2 \cdot P(F_{n_1 1, n_2 1} < TS)$ or $P \text{value} = 2 \cdot P(F_{n_1 1, n_2 1} > TS)$, whichever is less than 1.
- 6. Conclusion: There is enough evidence to conclude that ratio of the variance associated with the measurement of ______ for all ______ and the variance associated with the measurement of ______ for all ______ (is more than/less than/not) (value of Λ_0). (If two tailed and we reject H_0 , add: "In fact, it is (more/less).")

Hypothesis Testing Details: For $\mu_1 - \mu_2$, Small sample, non-normal data, n_1 , n_2 greater than 8

1. Hypotheses:

2. Assumptions: We have independent random samples from two populations that have distributions with the same shape.

3. **Rejection Region:** For the three types of tests:

Left: Reject H_0 if $TS < Z_{\alpha}$ Right: Reject H_0 if $TS > Z_{1-\alpha}$ Two: Reject H_0 if $|TS| > Z_{1-\alpha/2}$

4. Test Statistic:

$$TS = \frac{W - \mu_w}{\sigma_w}$$

Where:
$$R_j$$
 is the rank of $(x_{1j} - \Delta_0)$ in the combined sample; $W = \sum_{j=1}^{n_1} R_j$
$$\mu_w = \frac{n_1(n_1 + n_2 + 1)}{2} \qquad \sigma_w^2 = \frac{n_1 n_2(n_1 + n_2 + 1)}{12} - \frac{n_1 n_2 \sum (\tau_j - 1)(\tau_j)(\tau_j + 1)}{12(n_1 + n_2)(n_1 + n_2 - 1)}$$

and τ_j is the frequency of the j^{th} distinct value in the combined sample

5. *P*-value: For the three types of tests:

Left: P - value = P(Z < TS)Right: P - value = P(Z > TS)Two: P - value = $2 \cdot P(Z > |TS|)$

6. Conclusion: There is enough evidence to conclude that difference between the mean ______ for all ______ (is more than/less than/not) (value of Δ_0). (If two tailed and we reject H_0 , add: "In fact, it is (more/less).")

1. Hypotheses:

2. Assumptions: We have a random sample from a normally distributed population of differences, with unknown variance.

3. Rejection Region: For the three types of tests:

Left: Reject H_0 if $TS < t_{n-1,\alpha}$ Right: Reject H_0 if $TS > t_{n-1,1-\alpha}$ Two: Reject H_0 if $|TS| > t_{n-1,1-\alpha/2}$

4. Test Statistic:

$$TS = \frac{D - \Delta_0}{\frac{s}{\sqrt{n}}}$$

5. *P*-value: For the three types of tests:

Left: P - value = $P(t_{n-1} < TS)$ Right: P - value = $P(t_{n-1} > TS)$ Two: P - value = $2 \cdot P(t_{n-1} > |TS|)$

6. Conclusion: There is enough evidence to conclude that difference between the mean _______ for all ______ (is more than/less than/not) (value of Δ_0). (If two tailed and we reject H_0 , add: "In fact, it is (more/less).")

1. Hypotheses:

 $H_0: \ \mu_1 - \mu_2 = \Delta_0 \qquad \mu_1 - \mu_2 \leq \Delta_0 \qquad \mu_1 - \mu_2 \geq \Delta_0$ $H_a: \ \mu_1 - \mu_2 \neq \Delta_0 \qquad \mu_1 - \mu_2 > \Delta_0 \qquad \mu_1 - \mu_2 < \Delta_0$ Where: $\mu_1 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is the mean } \underbrace{\qquad \text{for all } \qquad }_{\text{and } \mu_2 \text{ is } \mu_2 \text$

2. Assumptions: We have a random sample from some population of differences, and the sample size is large enough that we can use the Central Limit Theorem.

3. Rejection Region: For the three types of tests:

Left: Reject H_0 if $TS < Z_{\alpha}$ Right: Reject H_0 if $TS > Z_{1-\alpha}$ Two: Reject H_0 if $|TS| > Z_{1-\alpha/2}$

4. Test Statistic:

$$TS = \frac{D - \Delta_0}{\frac{\sigma}{\sqrt{n}}}$$

5. *P*-value: For the three types of tests:

Left: P - value = P(Z < TS)Right: P - value = P(Z > TS)

- Two: P value = $2 \cdot P(Z > |TS|)$
- 6. Conclusion: There is enough evidence to conclude that difference between the mean _______ for all _______ (is more than/less than/not) (value of Δ_0). (If two tailed and we reject H_0 , add: "In fact, it is (more/less).")

Hypothesis Testing Details: For $p_1 - p_2$

1. Hypotheses:

 $\begin{array}{ll} H_0: \ p_1 - p_2 = \Delta_0 & p_1 - p_2 \leq \Delta_0 & p_1 - p_2 \geq \Delta_0 \\ H_a: \ p_1 - p_2 \neq \Delta_0 & p_1 - p_2 > \Delta_0 & p_1 - p_2 < \Delta_0 \\ \end{array}$ Where: p_1 is the true proportion of all ______ that _____ and p_2 is the true proportion of all ______

2. Assumptions: We have independent, random observations from two binomial experiment, and there are enough trials in each that we can use the Central Limit Theorem.

3. Rejection Region: For the three types of tests:

Left: Reject H_0 if $TS < Z_{\alpha}$ Right: Reject H_0 if $TS > Z_{1-\alpha}$ Two: Reject H_0 if $|TS| > Z_{1-\alpha/2}$

4. Test Statistic:

$$TS = \frac{(\hat{p}_1 - \hat{p}_2) - \Delta_0}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

5. *P*-value: For the three types of tests:

Left: P - value = P(Z < TS)Right: P - value = P(Z > TS)Two: $P - \text{value} = 2 \cdot P(Z > |TS|)$

6. Conclusion: There is enough evidence to conclude that difference between the proportion of all ______ that ______ and the proportion of all ______ that ______ that ______ (is more than/less than/not) (value of Δ_0). (If two tailed and we reject H_0 , add: "In fact, it is (more/less).")